The APC/C activator FZR1 coordinates the timing of meiotic resumption during prophase I arrest in mammalian oocytes.

نویسندگان

  • Janet E Holt
  • Suzanne M-T Tran
  • Jessica L Stewart
  • Kyra Minahan
  • Irene García-Higuera
  • Sergio Moreno
  • Keith T Jones
چکیده

FZR1, an activator of the anaphase-promoting complex/cyclosome (APC/C), is recognized for its roles in the mitotic cell cycle. To examine its meiotic function in females we generated an oocyte-specific knockout of the Fzr1 gene (Fzr1(Δ/Δ)). The total number of fully grown oocytes enclosed in cumulus complexes was 35-40% lower in oocytes from Fzr1(Δ/Δ) mice and there was a commensurate rise in denuded, meiotically advanced and/or fragmented oocytes. The ability of Fzr1(Δ/Δ) oocytes to remain prophase I/germinal vesicle (GV) arrested in vitro was also compromised, despite the addition of the phosphodiesterase milrinone. Meiotic competency of smaller diameter oocytes was also accelerated by Fzr1 loss. Cyclin B1 levels were elevated ~5-fold in Fzr1(Δ/Δ) oocytes, whereas securin and CDC25B, two other APC/C(FZR1) substrates, were unchanged. Cyclin B1 overexpression can mimic the effects of Fzr1 loss on GV arrest and here we show that cyclin B1 knockdown in Fzr1(Δ/Δ) oocytes affects the timing of meiotic resumption. Therefore, the effects of Fzr1 loss are mediated, at least in part, by raised cyclin B1. Thus, APC/C(FZR1) activity is required to repress cyclin B1 levels in oocytes during prophase I arrest in the ovary, thereby maintaining meiotic quiescence until hormonal cues trigger resumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APCFZR1 prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing

FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ~1 h, and this is due ...

متن کامل

Zinc maintains prophase I arrest in mouse oocytes through regulation of the MOS-MAPK pathway.

Meiosis in mammalian females is marked by two arrest points, at prophase I and metaphase II, which must be tightly regulated in order to produce a haploid gamete at the time of fertilization. The transition metal zinc has emerged as a necessary and dynamic regulator of the establishment, maintenance, and exit from metaphase II arrest, but the roles of zinc during prophase I arrest are largely u...

متن کامل

Meiotic arrest in human oocytes is maintained by a Gs signaling pathway.

In mammalian oocytes, the maintenance of meiotic prophase I arrest prior to the surge of LH that stimulates meiotic maturation depends on a high level of cAMP within the oocyte. In mouse and rat, the cAMP is generated in the oocyte, and this requires the activity of a constitutively active, Gs-linked receptor, GPR3 or GPR12, respectively. To examine if human oocyte meiotic arrest depends on a s...

متن کامل

Multiple Requirements of PLK1 during Mouse Oocyte Maturation

Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, usi...

متن کامل

The APC/C activator FZR1 is essential for meiotic prophase I in mice.

Fizzy-related 1 (FZR1) is an activator of the Anaphase promoting complex/cyclosome (APC/C) and an important regulator of the mitotic cell division cycle. Using a germ-cell-specific conditional knockout model we examined its role in entry into meiosis and early meiotic events in both sexes. Loss of APC/C(FZR1) activity in the male germline led to both a mitotic and a meiotic testicular defect re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 138 5  شماره 

صفحات  -

تاریخ انتشار 2011